Building AI Automations with GPT-4
Artificial Intelligence has moved from experimental to essential. GPT-4 represents a breakthrough in language understanding and generation, opening unprecedented opportunities for business automation.
The Power of GPT-4 in Business Automation
GPT-4's advanced language capabilities make it ideal for automating complex tasks that previously required human intelligence:
- Document Understanding: Extract insights from contracts, reports, and emails
- Customer Support: Provide intelligent, context-aware responses 24/7
- Content Generation: Create personalized marketing copy, reports, and documentation
- Data Analysis: Transform unstructured data into actionable insights
- Workflow Orchestration: Coordinate multi-step business processes
Real-World Implementation Patterns
1. Intelligent Document Processing
import OpenAI from 'openai'; const openai = new OpenAI({ apiKey: process.env.OPENAI_API_KEY, }); async function processInvoice(invoiceText: string) { const response = await openai.chat.completions.create({ model: 'gpt-4', messages: [ { role: 'system', content: 'You are an expert at extracting structured data from invoices.', }, { role: 'user', content: `Extract invoice details from this text: ${invoiceText}`, }, ], functions: [ { name: 'extract_invoice_data', description: 'Extract structured invoice data', parameters: { type: 'object', properties: { invoice_number: { type: 'string' }, date: { type: 'string' }, total_amount: { type: 'number' }, vendor: { type: 'string' }, line_items: { type: 'array', items: { type: 'object', properties: { description: { type: 'string' }, quantity: { type: 'number' }, price: { type: 'number' }, }, }, }, }, required: ['invoice_number', 'date', 'total_amount', 'vendor'], }, }, ], function_call: { name: 'extract_invoice_data' }, }); return JSON.parse(response.choices[0].message.function_call?.arguments || '{}'); }
2. Context-Aware Customer Support
Building a customer support bot that maintains conversation context:
interface Message { role: 'system' | 'user' | 'assistant'; content: string; } class CustomerSupportBot { private conversationHistory: Message[] = []; constructor(systemPrompt: string) { this.conversationHistory.push({ role: 'system', content: systemPrompt, }); } async sendMessage(userMessage: string): Promise<string> { this.conversationHistory.push({ role: 'user', content: userMessage, }); const response = await openai.chat.completions.create({ model: 'gpt-4', messages: this.conversationHistory, temperature: 0.7, max_tokens: 500, }); const assistantMessage = response.choices[0].message.content || ''; this.conversationHistory.push({ role: 'assistant', content: assistantMessage, }); return assistantMessage; } }
3. Smart Email Classification and Routing
async function classifyEmail(emailContent: string) { const response = await openai.chat.completions.create({ model: 'gpt-4', messages: [ { role: 'system', content: 'Classify emails into categories: sales, support, billing, technical, general.', }, { role: 'user', content: emailContent, }, ], functions: [ { name: 'classify_email', parameters: { type: 'object', properties: { category: { type: 'string', enum: ['sales', 'support', 'billing', 'technical', 'general'], }, priority: { type: 'string', enum: ['low', 'medium', 'high', 'urgent'], }, sentiment: { type: 'string', enum: ['positive', 'neutral', 'negative'], }, suggested_action: { type: 'string' }, }, }, }, ], function_call: { name: 'classify_email' }, }); return JSON.parse(response.choices[0].message.function_call?.arguments || '{}'); }
Best Practices for Production Systems
1. Error Handling & Retries
Always implement robust error handling:
async function callGPT4WithRetry( messages: Message[], maxRetries = 3 ): Promise<string> { for (let i = 0; i < maxRetries; i++) { try { const response = await openai.chat.completions.create({ model: 'gpt-4', messages, }); return response.choices[0].message.content || ''; } catch (error) { if (i === maxRetries - 1) throw error; await new Promise(resolve => setTimeout(resolve, 1000 * Math.pow(2, i))); } } throw new Error('Max retries exceeded'); }
2. Cost Management
Monitor and optimize API costs:
- Use GPT-3.5-turbo for simpler tasks
- Implement caching for repeated queries
- Set appropriate max_tokens limits
- Use streaming for long responses
3. Security Considerations
- Never expose API keys client-side
- Implement rate limiting
- Validate and sanitize all inputs
- Use function calling for structured outputs
- Implement content filtering
Performance Optimization Strategies
Caching Frequent Queries
import { Redis } from 'ioredis'; const redis = new Redis(process.env.REDIS_URL); async function getCachedCompletion(prompt: string): Promise<string> { const cacheKey = `gpt4:${hashString(prompt)}`; // Check cache const cached = await redis.get(cacheKey); if (cached) return cached; // Call GPT-4 const response = await openai.chat.completions.create({ model: 'gpt-4', messages: [{ role: 'user', content: prompt }], }); const result = response.choices[0].message.content || ''; // Cache for 24 hours await redis.setex(cacheKey, 86400, result); return result; }
Streaming Responses
For better UX, stream responses in real-time:
async function streamCompletion(prompt: string) { const stream = await openai.chat.completions.create({ model: 'gpt-4', messages: [{ role: 'user', content: prompt }], stream: true, }); for await (const chunk of stream) { const content = chunk.choices[0]?.delta?.content || ''; process.stdout.write(content); } }
Real-World Use Cases
E-Commerce Product Descriptions
Automatically generate SEO-optimized product descriptions:
async function generateProductDescription(product: { name: string; features: string[]; category: string; }) { const response = await openai.chat.completions.create({ model: 'gpt-4', messages: [ { role: 'system', content: 'Write compelling, SEO-optimized product descriptions.', }, { role: 'user', content: `Product: ${product.name}\nCategory: ${product.category}\nFeatures: ${product.features.join(', ')}`, }, ], }); return response.choices[0].message.content; }
Legal Document Analysis
Extract key clauses from contracts:
async function analyzeContract(contractText: string) { const response = await openai.chat.completions.create({ model: 'gpt-4', messages: [ { role: 'system', content: 'Extract key terms, obligations, and risks from legal contracts.', }, { role: 'user', content: contractText, }, ], }); return response.choices[0].message.content; }
Conclusion
GPT-4 automation represents a paradigm shift in how businesses operate. By following these patterns and best practices, you can build robust, scalable AI systems that deliver real value.
Key Takeaways
- Start with high-value, repetitive tasks
- Implement proper error handling and monitoring
- Optimize costs through caching and model selection
- Prioritize security and data privacy
- Use function calling for structured outputs
- Stream responses for better UX
Ready to build your own AI automation? Contact us to discuss your project.